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1.0 Problem Definition [Andrew Norgren]

The project is to build and use a co-occurrence network from the Google N-gram 

Data [1]. The project will be completed in 3 stages. The goal of the alpha stage was to build 

the network and find several network statistics. The goal of the beta stage is to access the 

network, or as much of it as you can. Also the network building should be filtered and words 

with less than a certain cutoff frequency should not be included. In the final stage we have 

to include an associative cutoff for pair of words. The project is implemented in C and MPI is 

used for achieving parallelism.

The experimental data that used is the “Google N-gram Data” which consists of one 

trillion words that has been collected by Google Research.  Google Research uses n-gram 

models for various research and development projects.  An n-gram model is a model that 

takes the words found from public Web pages that occur together, and keeps track of the 

frequency (or how many times those occurrences are found.)  The “n” denotes how many 

words that occur together.  For example, a bi-gram model finds  the frequencies of pairs of 

words that occur together.  It is believed that this amount of data will be able benefit the 

research community in multiple ways, so Google Research decided to share this data.  They 

distributed the data  on six DVDS containing 24 GB of compressed text files.  Here is an 

example of what the data looks like:

(This is 2-gram data)

collectables collectibles 55

collectables fine 130

collected by 52

collectible pottery 50

collectibles cooking 45



ceramics collection 144

ceramics collection 247

Here are the statistics of the data:

Number of tokens:    1,024,908,267,229

Number of sentences:    95,119,665,584

Number of unigrams:         13,588,391

Number of bigrams:         314,843,401

Number of trigrams:        977,069,902

Number of fourgrams:     1,313,818,354

Number of fivegrams:     1,176,470,663

The unique words are words that appear at least 200  times.  and the five-word sequences 

are sequences that appear at least 40 times.  Google Research is interested to hear back 

from anyone who used this data in any way.

In this project we are mainly dealing with the bigram data. We will also be using unigram 

data for some of the tasks. We are not going to deal with 3-gram or 4-gram or 5-gram data 

provided by the google.

2.0 Co-occurrence networks

2.1 Introduction [Salil Bapat]

A co-occurrence network links together words that have occurred together in some piece of 

writing. Each word represents a node in the network, and the edges between the words 

indicate that they have occurred together. Note that the edges are directed, and show the 



order in which the words have occurred. The weights on the edges are the frequency of the 

two words occurring together in that order.

For this project, we are going build co-occurrence networks of the bigram data provided by 

Google. Here is an example of the co-occurrence network for the bigram data.

Consider the following bigram data:

the match 100

match is 200

is a 1111

is of 2112

a spectacle 300

chelsea match 1000

chelsea Chelsea 211

lampard chelsea 400

Then the co-occurrence network will look something like this:

211

200
1111

1000

400

300
100

the match

is

of

a

spectacle

chelsea

lampard

2112



As you can see, each bigram is represented by 2 nodes and an edge connecting the 2 

nodes. The edge is a directed edge and it starts from the 1

st

 bigram and goes to the 2

nd

bigram. The value of edge represents the frequency of occurrence of the bigram. As you can 

see there can also be self loops in the co-occurrence networks. In the above example, the 

bigram “chelsea chelsea” occurs 211 times in the dataset. Hence you can see a self-loop on 

the node representing “chelsea”. The weight of self-loop is 211. Self loops do occur in the 

google-bigram data.

Co-occurrence networks can be represented and used in several other ways. E.g. they can 

be used to represent distances between locations, chemical reactions, mathematical 

conversions etc. Following are some of the previous works being done using the co-

occurrence networks.

2.2 Co-occurrence vectors from corpora vs. distance vectors from 

dictionaries [Andrew Norgren]

A comparison and description of co-occurrence vectors and distance vectors is given in the

paper, “Co-occurrence Vectors from Corpora vs. Distance Vectors from Dictionaries.” Word 

vectors are developed and used to provide word meanings through numerical approaches to 

semantics. Co-occurrence statistics require larges sets of data that include rare words. This 

paper describes a method developed that constructs word vectors from a dictionary that 

handles rare words easily. These are called distance vectors. A distance vector is made from 

a reference network, which is a network of the words that are used to define a word. From 

these reference networks, you get word vectors, which are the lists of distances from a 

particular word to selected words, called origins. The distance vector is the distance from a 

word to these origin words. Co-occurrence vectors are the lists of the co-occurrence 

likelihoods of a word with the selected origin words. The cooccurrence likelihood is a 

function derived using densities and probabilities between two words. Distance vectors and 



Co-occurrence vectors were used in two experiments to compare two different semantic 

tasks. The first experiment was “Word Sense Disambiguation”, which is the problem of 

determining what sense, or meaning out of a word’s multiple meanings, a word has in a

given sentence. The method this paper used to determine this was to use context vectors, 

which is the sum of the constituent word vectors. The results showed that using co-

occurrence vectors produces higher precision than distance vectors, which means co-

occurrence vectors are generally better. The second experiment was “Learning of positive or 

negative meanings,” which is to determine if a sentence has a negative or positive meaning. 

These results showed that distance vectors have a higher precision, showing that positive or 

negative meanings are shown better in distance vectors than in co-occurrence vectors. [5]

2.3 Choosing the Word Most Typical in Context Using a Lexical Co-

occurrence Network [Premchand Bellamkonda]

This paper explained about a partial solution to the problem of lexical choice by using 

cooccurrence network. It explained about a new statistical approach to modeling context 

that helps in determining the most typical, or expected synonym in a given context. Here 

we might have to consider the context beyond the surrounding of the context to achieve 

satisfactory results. By doing so we will have greater power to assume the occurrence of 

that word and weight the word according to its information content. Here even though the 

word does not co-occur with another given word, but it will help to predict the use of that 

word if these two words are mutually related to third word. When building the network, root 

is connected to all the words that co-occur with it in the training corpus and again connect 

these words with their co-occurring words up to some specific depth. We use mutual 

information scores and t-score to determine a co-occurrence network. For choosing the 



most typical word, we find the sum of the scores of each co-occurrence of the candidate 

with a word in the sentence. To evaluate, the author took two tables that has the

data about the frequency of the words. The author could not come to prefect conclusion by 

table 1 as different patterns of words can occur. But from Table 2 he found out that second-

order results were helpful to achieve results better than baseline accuracy. By this we can 

say that we need more than surrounding context to build and adequate contextual 

representations. [3]

2.4 Discovering word senses from a network of lexical co-

occurrences [Premchand Bellamkonda]

This article presented a possible solution to find the nature of senses of a word from a 

network of lexical co-occurrences. It also differentiated the senses of the word from the 

network. Semantic resources have proven to be useful in information retrieval but only if 

word sense disambiguation is performed with great accuracy. Semantic networks were 

criticized for incompleteness and their relations with synonyms. An algorithm was designed 

to find the word senses and is done word by word in which processing of the word relies in 

the sub graph that contains co-occurrence. A network was build for English and French such 

that we got total number of different words and their occurrence in the corpus. Word sense 

discovery algorithm is explained.

In building the similarity matrix between co-occurrent, if there is no relation between two 

words in the network, similarity is noted as zero. This makes the network to build easily and 

is also efficient. But some semantics are difficult to catch. In SNN algorithm, clustering is 

performed by detecting the high-density areas of a similarity graph.

When the experiment the algorithm with corpus of English and French words, we observed 

that significant amount of words do not have any sense, even in second order occurrence. 

For evaluation of results, we compare the results with a standard resource that is 



acknowledged as golden standard. We got a satisfiable result of 88% agreement between 

its result and human judgments. So, the results obtained in first order co-occurrences, 

which produces a higher number of senses by word, are lower than the results obtained 

with second order occurrences. [4]

2.5 Conceptual grouping in word co-occurrence networks 

[PremchandBellamkonda]

This paper deals with query processing in large databases. Information Retrieval queries can 

often result in large number of documents found to be relevant which are sorted by 

relevance but not by analysis. If the retrieved information is of several pages, then it might 

be hard for the user to retrieve the specific query. So here the author expalined about the 

conceptual grouping which will try to find the exact meaning of the user query in a 

document collection. In building the cooccurence network, we consider the words to be co-

occurent only if they appear in document d and they are less than 50 words apart.

We find the total number of co-occurence networks in the whole document. The relevance of 

each co-occurent network is also found by using the distance between the words and the 

probablity of the occurence of the word. We summarize all the documents and find the 

strength between all the words i and j. For every word i, we find the 80 best words j that 

co-occur with i. In the conceptual grouping, all the words linked to the query int the co-

ocurence network are likely to be semantically related to the query. By using grouping 

algorithm we will be able to present the best three or four words for each group. By using 

conceptual grouping, we can give the user an overview of what he is interested in. After the 

user types in the query, all the documents titles that contain the query words are returned. 

The user can browse through these documents and view the original documents in another 

frame. Testing shows that this technique can improve precision, helps user find what they 

need more easily and give them a semantic overview of the document collection. [6]



2.6 Incremental Construction of an Associative Network from a 

Corpus [Premchand Bellamkonda]

The paper discusses about a computational incremental network model which is aimed at

modeling the development of human semantic memory. The authors discuss six main 

features namely: the kind of input, knowledge representation, way of adding new context, 

the unit where the co-occurrence is present, presence higher order co-occurrences and 

compositionality, which are present across the various existing models. These existing 

models include Latent Semantic Analysis (LSA), Hyperspace Analogue to Language (HAL), 

Sparse Random Context Representation (SRCR) and Word Association Space (WAS).

The authors provide their model ICAN in the paper. ICAN is based on network

representation, which is more accurate. Each word and its neighbor are associated with 

weights varying between 0 and 1. The model is an incremental model which allows addition 

of cooccurrences and deletion of neighbors if the strength of co-occurrence becomes weak. 

The model uses a window to capture the words and the co-occurrences with an option to 

vary the window size based on the accuracy required. The tests were run with a French child 

corpus and the results were satisfactory. Using a window size of 11, co-occurrence effect 

p p + (1-p)/2, p q + 0.02 (1-q) (p.m) and occurrence without co-occurrence effect p 

0.9 p, the similarity values at the 1st associate level was 0.415, which was more than 

other models.

The authors accept that the model has some initial blips but the initial results are

encouraging enough to display the model’s potential. The model would simulate the human 

word association pattern more closely than the vector representation methods. [2]



3.0 System Architecture [Salil Bapat]

The diagrams below show the architecture diagrams of the system which we had planned 

and also the system which we ended up implementing. Diagram 3.1 is the architecture that 

we had planned. In that the google 2-gm data will be first accessed, then the words which 

do not satisfy the cutoff conditions will be removed. After that the disjoint networks will be 

created and stored in files. Of these disjoint networks, reverse networks will be created. 

Then the disjoint networks and the reverse networks will be used to find query paths.

However due to several implementation problems, we did not get enough time at the end to 

do put our components in the architecture we had planned. Hence we ended up 

implementing a slightly different architecture as shown in Diagram 3.2. Here the disjoint 

network finding and the reverse network creator module are not integrated. So the disjoint 

network module will find the disjoint networks and other network statistics and the reverse 

network creator will create the reverse network of entire google 2 gram data. The path 

finder module will use the google 2-gram data and the reverse network to find query paths.

Due to this amended architecture, we were not able to put all the individual components in 

proper architecture to make complete use of the unigram and associative cutoffs.
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3.2 Implemented Architecture
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4.0 Co-occurrence network building [Salil Bapat]

4.1 Network building background

Before building the network I did some analysis on the existing google 2gram data. The 

data is distributed in 32 files. The file names start from 2gm-0000 to 2gm-0031. The data is 

stored in these files in sorted order. Along with these files, there is an information file, 

2gm.idx, specifying the start token in each file. Thus the 32 files themselves act as a co-

occurrence with the 2gm.idx acting as an hash for the information. The beta stage involves 

finding all the "from" and "to" links of a given node. On doing some analysis I found that the 

time required to access one of the 32 files and find all the "from" links of a node is quite fast 

(e.g. in the worst case scenario, time taken to search a file with 10000000 bigrams is 

approx 4 secs). Hence to find the "from" links, using the existing structure is the best 

approach. Problem comes when you need to find all the "to" links of a node. Since the data 

sorting is done based on the "from" links, there is no quick and easy way to find the "to" 

links data from the given set of files. Hence the network I built gives a very quick

access to only the "to" links of a particular node. Hence the name of the root-network 

directory is also called google-ngram-reverse-network. So in the beta stage, if we want to 

find all the from links of a word say "abc", then we will first go in the 2gm.idx and get the 

file name which has all the bigrams of "abc". This file will then be accessed to get all the 

bigrams. On the other hand, when all the "to" links of the word "abc" will be required, the 

network which I build will be accessed to get all the connected nodes. A completely different 

approach would have been to build a complete network and keep it in memory itself. 

However, this would have meant that the network had to build everytime a query is run.



4.2 Network Details

The network will be stored in a directory structure with root directory as "google-ngram-

reversenetwork". This parent directory contains 63 pre-defined directories. 26 directories of 

alphabets "a" to "z", 26 of alphabets "A" to "Z", 10 of numbers 0 to 9. And an additional 

directory named "symbols". These 63 directories will be created right at the start of the 

program. After these are created, we start reading the bigram data. For each bigram found, 

another level of directories will be created as follows:

If there is a bigram

over get 1000

a directory will be created under the directory google-ngram-reverse-network/g/, named 

ge. So there will be a structure created like google-ngram-reverse-network/g/ge. Inside this 

directory a file named to_Corinthians will be opened in append mode. In this file the bigram 

entry will be stored in the reverse order. So the bigram will be stored as:

get over 1000.

Similar processing will be done for all the bigrams. So for e.g., the file which we created 

above will contain all the bigrams who’s second token starts from "ge". If the bigram starts 

with a symbol (non-alphabet non-number), then it will be stored in to_Corinthians file inside 

the directory googlengram-reverse-network/symbols. By having this 3-level directory 

structure, the data access is much faster and simpler. This structure will be used to find all 

the "to" links of a word in beta stage. So, if we want all the "to" links of the word "get", 

then we will first open the directory google-ngram-reverse-network/g/ge, then open the 

to_Corinthians file inside that directory, then traverse this file and get all the bigrams 

starting with "get". Thus it will be really easy and fast to find all the "to" links of a word.

4.3 Parallelism Details



There were a few approaches that I evaluated for achieving parallelism. The first approach I

thought of was involved the 0th processor reading all the bigram data. It will store this data 

in a dynamically allocated array of structures. It will then calculate the number of bigrams 

that each processor has to process, then send this number of bigrams to that processor. 

This was quite straight forward method. However, this involved too much of data transfer 

between processors and that reduced the efficiency of the program. The 2nd approach 

which I evaluated involved distributing files per processors. So if there are 8 processors, 

then each processor will get 4 files to process. If there are 9 processors then each processor 

gets 4 files, and the one remaining processor will work on one of the 32 files. However, with 

this, the efficiency increases only if the number of processors increases in the power of 2. 

The third approach which I evaluated (and finalized), eliminates the need to send huge data 

across and also the efficiency increases with increase in the number of processors. In this 

approach, first the processor 0 counts the number of lines in all the files. From this count 

and from the number of processors, it calculates the number lines which one processor 

should process. Starting from the 1st file and 1st processor, it sends the start position, the 

file number and the number of lines of each processor to each processor. (This is possible 

because the processor 0 also calculates the number of lines in each file along with the

total number of lines in all files.) Then each processor, opens its file, skips first "start" lines, 

and then starts processing. If the file ends and if number of lines it processor has to read is 

still not reached then the next file is opened and read. All this process is possible because of 

ordered name of files starting from 2gm-0000 to 2gm-0031. I am using only MPI to achieve 

parallelism. I could have combined MPI and OpenMP, with OpenMP working on each 

processor and spawning 4 threads. However, the problem is that at any stage my input data 

is from a file which has to be read sequentially. Hence I cannot do any threading while 

reading and processing the file. Hence I was not able to use OpenMP. One problem with this 

whole approach is that there will be situations when several processors will try to write to 

the same to_Corinthians file. For e.g, processor 0 has the bigram "hello people 100" and 



processor 1 has the bigram "more people 200", and both these bigrams are evaluated at 

the same time, then multiple processors will try to write to the same file at the same time 

creating race conditions. I am avoiding this by creating one to_Corinthians file per 

processor. So instead naming the file to_Corinthians, its name will be

to_Corinthians_(processor id). This will not cause any kind of bottleneck in beta stage. This 

is because in the beta stage, all the files under a particular directory will be read for the "to" 

links.

4.4 Special Cases

If the word contains a "/" in its first 2 letters, then we will not be able to create a folder of 

this type. Same is true with ".." or ".". So to be on the safer side, if the word contains a "/" 

or "." then it is treated as a symbols.

4.5 Assumptions

I am assuming that the directory structure of the google Ngram data remains same. This 

includes the file names and file counts. Also I assume that there is enough space to store 

the googlengram-reverse-network that I am creating. Also I am assuming that the user

has write access on the directory from where he is running this program (because this is the 

place where the network will be created).



4.6 Efficiency Improvements

To improve efficiency of network building, I used the bulk insert algorithm while creating the 

network. In this case, instead of writing one entry to any to_Corientihan_[id] file, I write a 

bunch of entries (max 40)  at a time. So all the consecutive entries which are to be written 

to the same file are first stored in a temporary string and then if this count reaches to 40 or 

if the file to be written to changes, this temporary string is flushed out to the file. This 

significantly reduces the file i/o in turn improving the efficiency.

4.7 Benchmarking

Program was run on the google-2gm data. The network was successfully generated for the 

whole 2gm data.

Processors Timings (memory 

used: 2 gb)

Number of 2-

gm files

16 3 hrs 56 mins 32

32 2 hrs 47 mins 32

64 1 hr 58 mins 32

As you can see the time does decrease with increase in number of processors. However, 

the time does not decrease by half when I double the number of processors. This is not 



because of the amount of data sent or because of the way I am distributing the data. 

This is solely because of the amount of disk access involved. The way I am building the 

network, there is a huge amount of disk access involved in each iteration. As the 

number of processors increase, more number of processors accesses the same part of 

disk making it really slow. Another important thing is that these times may vary 

depending on the amount of disk access (by all the users) at a given point time.

4.8 Space Requirements

As far as the memory is concerned, the networking building does not require any large 

amount of memory at all. I require about 100 mb of memory for my data storage. What the 

network building requires is a large amount of disk space. The amount of disk space 

required for building the reverse network for whole 2-gm data is around 5.5 gbs. This is 

because the reverse network actually has all the 2gm data itself, t is only stored in a 

completely different format. As a general rule, the reverse network will be approximately of 

the same size as the original data content.



4.9 Testing and Validation

I started out with smaller data sets and ran the program with various numbers of 

processors to check if I am getting the same output every time. I tried the cases where the 

number of processors are less than/ more than/ equal to the number of files. Then I ran the 

program on just one file in the google ngram data, with 1 and 8 processors. Got the same 

output. Then I ran the file on whole ngram data with 32 and 64 processors. To verify that 

the network built is correct, I calculated the number of nodes, edges and total edge weight 

produced by each processor. Then I wrote a stub that calculates all the number of lines 

which have tokens whose frequency is less than the unigram cutoff. This stub was a hard 

coded program that counted the number of lines. So the network built would have been 

wrong if these 2 numbers did not match. This was not true in my case. Also I did some 

adhoc testing by checking for several random bigrams. Another important factor to tell the

correctness of network is the size. The way I am building the network, the size of the 

network that I build should be a bit more than the size of the bigram data (because data is 

scattered amongst several files instead of just 32). All these correctness tests were satisfied 

by the network that I built.



5.0 Network Interface [Salil Bapat]

The network interface contains functions to access the google-2gram network. The functions 

will access the network and return the required data.

5.1 Network Interface Details

The network may be accessed for 2 things. 1) To get all the links from a word. 2) To get all 

the links to a word. These 2 things are implemented in 2 separate functions named 

GetLinksFromANode and GetLinksToANode respectively. 2 separate functions were required 

because the way we store network for easy access of "to" and "from" words is completely 

different. All the "from" links are fetched from the already-existing google-ngram data which 

is provided. The "to" links are fetched from the google-ngram-reverse-network which is 

created in previous steps.

5.1.1 Getting the "from" links

The “from” links of any node are fetched from the google 2 gm data which is already 

provided. Following is the algorithm for this function:

1. Accept the source word as input of the function.

2. Open the 2gm.idx file which is inside the 2-gm data folder.

3. From the entries listed in this file, find the 2-gm file where this lookup word will 

start.

4. Open the file found in step 3.

5. Skip all the entries which do not match with the word to lookup.



6. Once you find the word to lookup, scan each next word and store all the connected 

nodes in a linked list.

7. If all the entries for the word to lookup end with the file still not having reached its 

end, return the head of the created linked list.

8. If the file reaches its end with the entries for word to look up still remaining, open 

the next file (files are sorted by numbers starting from 00 to 31) and adding entries 

in the linked list till the entries for word to look-up still exist.

9. Return the head of this created linked list.

10.Note that the first node in the linked list will always be the node to be looked up.

11.Each node in the linked list consists of 2 entries, the connected node and the 

frequency of the bigram. For the first node in the linked list, the frequency is set as 

-1.



5.1.2 Getting the "to" links

The “to” links to any node are fetched from the google-ngram-reverse-network which is 

created in earlier step.

Here is the algorithm for this function:

1. Accept the destination word as the input of the function.

2. Check the first 2 letters of the destination word. If the destination word is say 

"human" then the first 2 words will be hu.

3. Open the corresponding foder in the google-ngram-reverse-network. In above case 

you will open google-ngram-reverse-network/h/hu

4. Scan all the files which are created under this folder one file at a time. Number of 

these files will depend on the number of processors used to create the network.

5. All the entries in all the files will be scanned. When an entry is found with the 

destination node as the first token, then add that entry to the linked list. Repeat this 

process for all the files.

6. If you are unable to open the foder in question then that means there are no "to" 

links for this destination word. Hence the linked list in this case will consist of only 

one word which is the destination word.

7. If the word is a single letter word then the directory in question will just be google-

ngramreverse-network/[word-in-question].

8. More on which foder will be accessed in which case can be found in the introduction

comments of NetworkBuilder.c. Same algorithm is used over here.

9. Retrun the linked list which contains all the nodes to the destinations node.

10.Note that the first node in the linked list will always be the destination node which is 

being looked up.



11.Each node in the linked list consists of 2 entries, the connected node and the 

frequency of the bigram. For the first node in the linked list, the frequency is set as 

-1.

5.2 Data Structure used

A linked list is used for storing the "to" or "from" links of a node. The linked list consists of 2 

items; the connected token and the frequency of the bigram. In every case, the first node of 

the linked list will be the token send in for a lookup. So even if there are no connections

found, the linked list will still contain the head node with the token being looked up.

Example of this structure is as follows:

Suppose the bigrams are like:

good girl 100

good boy 200

good man 300

boy man 400

girl man 500

The "from" linked list for the word "good" is:

(good,-1)->(girl,100)->(boy,200)->(man,300)

The "to" linked list for the word "man" is:

(man,-1)->(good,300)->(boy,400)->(girl,500)



The data structure used for storing the network is ofcousre files and more on this data 

structure can be found in the introduction comments of NetworkBuilder.c

5.3 Network Usage

This network will be used in beta stage for dealing with the queries. While searching for all 

the paths of a given token, both these GetLinksFromANode and GetLinksToANode functions 

will be called to get all the connected links.

5.4 Testing and Validation

For testing the network interface, first a sample dataset was created. The network was 

tested on this sample dataset and logical defects were fixed right away. I then verified the 

network interface by creating a network of just one of the 2-gm files(2gm-0000). On this 

network I ran the network interface for various different words. I compared these results 

with results of a stubs that I wrote which was dedicated to calculate a connections of a 

particular word where in everything is hardcoded. The verification showed that there were 

some differences specially when the word has no connections at all which I later fixed. Then 

I went ahead and verified that this networked worked perfectly for the whole 2-gm data 

(with a approach similar to earlier).



6.0 Disjoint Networks

The part of problem in alpha stage is to find the number of disjoint networks and related 

statistics in the whole 2gm co-occurrence network. For this purpose, we divide unigram data 

amongst processors. Each processor forms the network for its own data. These networks 

are at the end combined together.

6.1 Data Distribution [Premchand Bellamkonda]

6.1.1 Unigram Cut-off

Before we implement the distribution of data, we first check for the unigram cutoff. Only the 

unigrams whose frequency are greater than the cutoff are distributed.  If the frequency is nt 

greater than the cutoff, we just ignore the unigram and that unigram won’t be distributed. 

To verify the condition, I take the cut-off form the command line and store it. Now in the 

unigram file we read every word and also read the frequency of that word beside it. I store 

these in the temporary buffer. If the condition is satisfied, I will store the word which is 

there in the buffer to the array which will be distributed by all the processors. If the 

condition is not satisfied, it will not store the word in the  buffer and go to the next word in 

the unigram file and store that word and frequency in the temporary buffer. 

In this way the unigram distribution is done using cutoff.

The code for the unigram cutoff is developed but it is not considered in the final version. 

This is because we are not able to change our architecture in the final stage because oof 

time complexity.



6.1.2 Associtive Cut-off

Associative Cutoff is done at the path finding module. Whenever a path is found, we can will 

find the asscoiation score. Asscociation score can be calculated by the number of times a 

bigram is occuring / Frequency of the individual scores. If the assoctaion score is greater 

than the cut-off, then we inlcude the path. Or else, it wont be included.

This part is not included because of the algorithm we developed in the initial stage. If we 

want to include this we will have to change the algorithm. As we did not get enough time to 

change the whole algorithm, we couldn’t implement the associative cut-off. We could have 

have done if had enough time to change the implementation (algorithm) of our project. 

6.2 Distribution of Data by all Processors [Premchand Bellamkonda]

6.2.1 Approach

Distribution of the data to all the processors is done based on the number of processors and 

number of lines in the file. In our approach, we are first read the number of lines in the 

whole file and calculate the interval which is number of lines/No. of processors. We  

distribute the data in block-wise. Now master processor will give all the processors then 

stating point and the interval. For the last processor, it will give interval up to the end of the 

file. Now all the processors will be having their starting point and number of lines it has to 

read in the file.Now each processor will open the file and read till for its starting point till 

reaches its interval end. Here every processor will read the file and store in temporary 



buffer till it reaches its starting point. Only from here, we are storing the values it read from 

the file till the end of its interval. As the file is having the number beside the word which is 

the number of times it occurred, we are also storing the number in a temporary buffer 

which we don't use again. Now each and every processor will have its words in the array. 

We are giving space after every word in the array for 

passing as that's the specified format of input required.

.

6.2.2 Assumptions

I am assuming that the structure under the directory which user specifies at the command 

line remains same. This is because I am opening the unigram file located at 

/dvd1/data/1gms/vocab. Contents of this file will then be read and stored in the string as 

explained above.

6.2.3 Data Distribution design

Here we choose to distribute the data using block stream instead of cyclic distribution. This 

is because we are reading 

the file in a sequential way and it will be easy to distribute it in block stream. Because if we 

use cyclic way, each 



processor has to traverse through all the data until it gets the next item to be distribute. So 

in our case, 

each processor don't have to traverse

6.1.4 Testing

The code for this part of the project is tested for different number of processors varying the 

size of the file. It is checked if the number of lines in the file is divided according with the 

number of processors and size of the file. It’s also checked that the last processor will 

indeed get all the remaining lines. We created different files of different size (with respect to 

number of lines). It works fine for all the cases.

Output: Gives an array of words to the Network_Stats function to find the disjoint networks.



6.3 Finding disjoint network per processor [Shruti Pandey]

6.3.1 Approach

After looking at the data we realized that if there are two unique words, say word1 

and word2 which are connected to N other words forming networks say N1 and N2. Then 

provided any of the words in N1 is connected to any other word in N2 then that would mean 

both the networks are connected to each other. This was the basic approach we kept in 

mind. 

Now simply connecting both the networks would have caused many duplicate entries 

of words in the formed network and looking at the size of the data it was very important to 

remove the redundancy so we took care in order to remove redundancy while processing 

the data. 

Another issue was, what if there are two existing networks and later in some point of 

time we find a new network which is connected to both. It means that all three networks 

are connected so it would again be important to join all three networks removing the 

redundancy simultaneously in order to keep the processing time less. 

One more important issue to address was the memory we allocate for the words to 

be stored in the link list. Since the largest word was of length 40 and the smallest was of 

just one character  thus we decided to allocate the memory for a word dynamically as per 

the size of the word thus saving a lot of memory wastage. Performing malloc for each and 

every word is ofcourse an expensive operation as per time but since we had to utilize the 

memory efficiently  we went on with this approach.



6.3.2 Module Description

This module finds the number of disjoint networks for each processor. It takes in the 

unigrams and for each unigram, it takes as input all the connected words to it and 

processes them in order to find the number of disjoint network.

6.3.3 Parallelism in the Program

In this module, each processor has its own set of data and finds the disjoint network for its 

dataset. After finding the number of disjoint Networks in each processor.  The total number 

of processors are divided by 2  and in case the number of processors is an odd number then 

the ceiling for the above value is taken (Example:  k = ceiling(n/2)) .All the processors 

which have the id more than 0 and less than k send write their respective network in a file 

which is named according to the processor number and the number of the network which is 

of the format (net<processor_id><network_no>) and then send the number of files created 

to processor 0 for further processing. Similarly the processors with id more than k do the 

same but send the number of files they generate to kth processor instead of 0. The network 

created by 0

th

 processor and the kth processor is passed on to them as they were created 

for further processing. All these files are further agglomerated to get the total number of 

disjoint networks . 

6.3.4 Assumptions

We assumed that the input provided to the program is correct and in the required format. 

Since we are dealing with link list in which you need to store the pointers too along with the 

data thus we assumed that as per the amount of data being processed by each processor 



the amount of memory allocated to the processor is enough for the processing of the 

program. Also I assume that there is enough space to store the files being generated by 

each processor . Also I am assuming that the user has write access on the directory from 

where he is running this program (because this is the place where the network will be 

created).  

6.3.5 Input/Output

INPUT: Takes list of unigrams per processor. The input is in the format of tokens separated 

by spaces. example: "big blue cat cold dog hot yellow"

OUTPUT: The final output is a list of files containing the disjoint networks for all the 

processors other than 0 and kth processor where k = ceiling(p/2). 0

th

 and kth processor just 

pass on their linked list to the program for agglomerating the data.

For e.g.: if there is only one processor: and the networks found in the processor is as 

follows:

Processor 0 : big-->dog-->cat-->runs (network 1)

        |

        blue-->jeans (network 2)

It writes these networks in 2 files named net01 and net02 with the contents as follows:

File net01: big dog cat runs

File net02: blue jeans

6.3.6 Data Structure Used

We have used a two dimensional linked list structure. The first linked lists (Network list) 

stores all the connected words. The second linked list (Base list)  connects all  the 1st linked 

lists. For each 1

st

 link list formed a new node for the base list is formed which contains the 



head of the 1

st

 linked list. Thus we can see that the number of nodes in the base list is 

actually the number of disjoint network in the processor.

For e.g. If the network list is like word1-->word2--> and  another network list is word3--

>word4. Then the base list will be

base1-->word1-->word2

|

base2-->word3-->word4

6.3.7 Algorithm

1) Get the set of unigram's and process one by one.

 2) Till all the unigrams are not processed. Take one unigram from the list above say root 

token 

 and start processing following the steps given below.

 3) For the first root token it searches the file (out of the 32 files) which contains the token

    by using the 2gm.idx and starts processing all the words connected to it one by one.

 4) Till all the words connected to the root token are not processed. Take one word at a time 

   and process as given below.

 5) IF it is the first root token then I just create a base network and add the linked list 

 to it. This is done because I am considering only the  links which are connected to the root

 token (for links) so none of the words in the network would be redundant and thus we can 

form

 a baselist in the starting. 

 6) ELSE Process the linked list till all the nodes for one root token is processed. Take one 

 node at a time and search in the already existing base list to check if it already exists in 



 any of the network.

 a)IF WORD FOUND in the base list

->IF word found is the first word of the linked list or in other words is the 

 root token then mark the network containing it. Find a pointer to the end of 

 the network to make further processing fast. I added this step in the 

 beta stage in order to fasten up the processing.

-> IF a network has already been marked and the word being searched is found in

 that network and there are notemporary networks made till now then break from

 the loop and go back to fetch the next word from the network as in step 4. 

->IF word found is not the first word found and it is found to exist in a network 

 other than the marked network then, check if there is any temporary network 

 made. If there exists a temporary network then add this temporary network to 

 the end of the marked list. Else if there is no existing temporary network 

 then add the base list (in which the current word is found) to the already 

 existing marked network and delete the base list pointer for the second base list.

b)IF WORD NOT FOUND in the base list.

-> IF word not found is the first word of the linked list or in other words is

 the root token then make a temporary network and set the network made flag 

 to true.

->ELSE check how many networks are made in the base_list. If only one network has 

 been made till now then check if temporary network is made already. If

 it is made then add the word to the already existing network and if not made 

 then make a new network. In case there are more than one network then add the

 node to the marked network.

 7) IF there are still more words connected to the root token then go back to step number 4 

to



 fetch the next word.

 8) ELSE if none of the words from the currently processed list of words was found in the 

already 

 existing networks then add a new base list pointing to this network. Else if the number of

 networks in the base list is one and there are no temporary networks made then add the 

new 

 temporary network formed to the base list.

 9) IF there are still root tokens to be processed then go back to step 2 to fetch more 

tokens.

 10)Find k = ceiling(number_of_processors/2)

 11) IF the id is greater than 0 and less than k then those processors would write each 

network

 into a file named as described above and send the number of networks found to processor 

0. 

 Similarly the processors whose id is greater than k also write their networks in the files

 as mentioned above and send the umber of networks found to processor k for further 

processing.

6.3.8 Testing

If we analyze the approach there were many cases which the program needed to handle like 

:

->before a token is found in a already existing network a temporary network has already 

been formed (the previous tokens were not found in any of the existing networks). 

->all the tokens are found in the already existing base list.

->none of the tokens are found in the already existing base list.



And many more. To bring in the above cases as mentioned above I had to make may 

datasets to ensure the correctness of the program.

I am giving a set of inputs that I had used to test the correctness of the program and the 

output that gets formed. I had tested the program using one processor as well as more than 

one processor to check the correctness of the output files being generated by each 

processors. I worked through all these examples manually to ensure the output is correct.

Note: for simplicity I am giving the outputs generated as done by one processor to avoid 

confusion. There were many more test datasets which I had created but these would be 

enough to make the working and correctness clear.

Input from program “readnew.c” is same as we are using the same dataset for all the 

cases: 

Input: "big blue cat cold dog hot yellow"  

CASE 1:  In this case you can see that as we work through the algorithm then by the time 

4

th

 batch of input is processed we have 3 networks and while processing the 5

th

 batch input 

we can see that some of the nodes exist in network 1 and some in network two so we need 

to merge network one and two along with this batch of input and delete the base list pointer 

to the 2

nd

 network.

The words connected to the root words given above from readNew.c:

1)big-->dog-->cat        2)blue-->jeans      3)cat-->runs     4)cold-->weather      5)dog--

>barks-->runs-->bites-->blue         6)hot-->weather           7)yellow-->hat

Output: 

           base1-->big-->dog-->cat-->runs-->barks-->bites-->blue-->jeans



  |

  base2-->cold-->weather-->hot

  |

  base3-->yellow-->hat

Therefore, number of disjoint networks = 3.

CASE 2: This case is similar to above one but we can see that 4

th

 ,6

th

 and 7

th

 batch of input 

are common for some words thus they are added into one. Thus we get 2 networks.

The words connected to the root words given above from readNew.c:

 1)big-->dog-->cat 2)blue-->jeans 3)cat-->runs 4)cold-->weather

5)dog-->barks-->runs-->bites-->blue 6)hot-->weather 7)yellow--

>hat-->cold

Output: 

   base1-->big-->dog-->cat-->runs-->barks-->bites-->blue-->jeans

   |

   base2-->cold-->weather-->hot-->yellow-->hat

Therefore, number of disjoint networks = 2.

CASE 3:  This is the simplest example wherein all the inputs are connected and thus there 

is only one network formed.



The words connected to the root words given above from readNew.c:

1)big-->dog-->cat  2)blue-->jeans 3)cat-->runs 4)cold-->weather

5)dog-->barks-->runs-->bites-->blue 6)hot-->weather 7)yellow--

>hat-->cold-->big

Output:

base1-->big-->dog-->cat-->runs-->barks-->bites-->blue-->jeans-->cold--

>weather-->hot-->yellow-->hat

Therefore, number of disjoint networks = 1. 

6.3.9 Observations

 In the final stage we tested the program on a very large dataset. I tested it on the 2gm-

0000 file and 2gm-0031 file

 and successfully got the networks in these files. For the 2gm-0031 file I got 1869 networks. 

It took 17 hours for 

 the program to get the output and that is because I could use only one processor to 

execute the problem due 

 to the busy queue status.

According to our analysis the process is not very slow but the nature of the data decides the 

speed of the execution.

For example in the file 2gm-0000 there are 37240 unique tokens and these tokens are 

further connected to 100,00,000



tokens. Now if we analyse this data we would find that the minimum number of unique 

tokens is 37240 and apart from 

that there might be many other unique tokens which would add up to the list and thus the 

linked list would grow

immensely thus slowing down the system. 

On the other hand in the case of 2gm-0031 file it has 312504 root tokens which is more 

than the previous file

but in this case these are connected to 4843401 words and most of these words are disjoint 

and not connected 

to each other. Thus forming a number of disjoint networks (1869) thus being comparatively 

faster. 

Therefore, the more number of disjoint network we have, faster the program runs. or the 

more number of common words 

we get,faster is the program.

we even executed the the system on 2gm-0000 file using 32 processors and the processing 

was lot faster than one

processor.

for eg: If we consider the 2gm-0031 file. There are 3,12,504 unique tokens and these 

tokens are connected

to 48,43,401 other tokens. 

As mentioned above, the system took 17hrs to find the disjoint network for this data. If the 

number of processors



is 2 then the unique tokens would get divided into half which is equal to 156252 thus 

decreasing the number of 

bigrams as the number of bigrams would be equal to the number of words connected to 

these unique tokens.

Thus in the above case it is pretty evident that as the number of processors increase the 

amount of data to

be processed keeps on decreasing thus the the network being formed would also get 

smaller and smaller leading to

greatly fastening up the process. Thus we can see that this method gets better and faster 

with more parallelism.

We will now see if this module follows the 2 basic laws of parallelism which are the Amdahl's 

Law and Gustafson-Barsis's:

If we look at Amdahl's Law which states that if f is the fraction of operations in a 

computation that must be performed

sequentially, where 0 <= f <= 1. The maximum speedup S achievable by a parallel 

computer with p processors performing

the computaion is:

                   S <= 1/(f + (1-f)/p)

Thus looking at the above algorithm we can see that the parallelism is exploited in dividing 

the huge amount

of data. And the Serial component would be the network building. The main part taking time 

in the serial component 

is the linked list searching time. But as we can see as the number of processors increase the 

searching time



(sequential part) decreases. Therefore we can see that the technique is in accordance with 

the Amdahl's law.

Coming back to Gustafson-Barsis's Law which states that given a parallel program of size n 

using p processors, 

let s denote the fraction of total execution time spent in serial code. The maximum speedup 

S achievable by this

program is S <= p+ (1-p)s 

As mentioned above even in this case as the number of processors increase the sequential 

component decreases 

and thus greatly increasing the speedup. Hence it is observed that even Gustafson's law is 

true for this module because if serial component is 0 then the speedup achievable is ideal 

but in this case the serial component cannot be 0 thus the achievable speedup is at most p.

6.3.10 Space Complexity

The space complexity of this program also includes the space complexity of  

“bigramsearch3.c” and “readnew.c” as they execute on the same processor. The total length 

mentioned below is the exact total length of all the unique words in the google-2-gram data 

found my calculating the length returned by the file “readnew.c” which returns an array of 

unique words separated by spaces.

Total num of unique words: 13588391

Total length      : 92728648  

Avg word length   : 7 + 1 ('\0') = 8



base node:-

ptr: 8 bytes

ptr: 8 bytes

network node:-

word: 8 bytes

ptr : 8 bytes

network memory: (8+8)*13588391  (As the network has unique words) = 217,414,256 

bytes

(218MB)

base memory   (100 can change depending on the number of disjoint networks) : 

(16+8)*100 = 2,400 bytes (2.4KB)

premchand's array: 92,728,648 bytes (93MB) CONTIGUOUS

BLOCK OF MEMORY on each processor

other sources of memory utilization:

file operations, miscellaneous variables, pointers,

function calls,etc.

So altogether in the worst case the total memory required should be around 700MB 



6.3.11 Time complexity

P:  “readnew.c”

 n: words returned by readNew.c

 m: words read from bigram data.

 S: time complexity for “Find_Disjoint_Network”

 p: num of processors and there is one base list

 = ( P + n * m * S) / p

 = ( P + nmS ) / p

 = O(n^2)

 if p = 1 (1 processor), O (n^3) 

 if more than one base nodes.

 b : base nodes

 = ( P + n* m * S *b) / p

 = ( P + nmSb) / p

 = O(n^3)

 if p = 1 (1 processor), O (n^4)

6.3.12 Benchmarking



Due to the busy queue status we could not get the benchmarking results but we tried it on 

one  processor and it works properly. Only the problem being that it would take a lot of time 

depending on the amount of data due to one processor.

6.4 Combining the networks [Andrew Norgern]

6.4.1 Approach

This part of the program combines the efforts of all the other processors and determines the

number of disjoint networks and the number of nodes in each network. Before this part of 

the program is run, it is assumed that each processor (besides processor 0 and processor k) 

has written its networks into individual files into a decided directory.

Processor 0 and processor k have their networks in a linked list structure.

Processor k is used to increase the parallelism by sharing the workload of processor 0 in 

combining the local disjoint networks of each processor. The value k is defined as the ceiling 

of (number of processors)/2.

Processors with id from 1 to k-1 will have sent its number of networks to processor 0. 

Processors with id from k+1 to (number of processors)-1 will have sent its number of 

networks to processor k.

This program has the MPI code for recieving these numbers. When processor 0 and 

processor k recieve the number of networks from a processor, they will combine the 

networks of that processor to their list of networks. Each file that contains a disjoint

network of that processor will be opened one by one to look and see if a node in that



file is in one of their networks. If it is, it combines the two networks, taking care of 

redundant nodes. If it isn't, it adds that network to the list of networks.

Then processor k will write it's networks to individual files. It then sends the number of 

networks to processor 0. Processor 0 will then open up those files and combine those 

networks with its own networks. After this, processor 0 will contain the list of disjoint 

networks. Processor 0 then prints out the number of disjoint networks and the number of 

nodes in each network.

6.4.2 Testing and Benchmarking

The overall system has been tested on a very small network, and everything works 

as expected.  To test this individual part of the code on a large network, I designed a test 

case to use.  For this part to work, there needs to be the local networks for each processor 

written to file.  Also, the two processors that take care of combining the networks need to 

have their networks in linked lists.  So I had to first provide these prerequisites and then 

allow the agglomeration to work. First, I used and modified Premchand's program to 

distribute the data of one of the 2 gram data files and write the output of each processors 

distributed data to files.  This process was run as a separate program first.  Then for the 

test case program, I had processor 0 and processor k , where k = ceiling of (number of 

processors) -1, open up their network files and store them in a linked list.  Now all the 

prerequisites are met for testing my code.  I first ran the test case with a wall time of 3 

hours using 32 processors and it timed out.  I then ran the test case with a wall time of 6 

hours and it timed out.  Finally I ran the test case with a wall time of 10 hours and it timed 

out.  After this I ran out of time, and my processes were being stuck in the queue. I 

underestimated the amount of time it would take to agglomerate the networks in this way.  

I came to a conclusion about the design of our system that finds the disjoint networks.  The 



part that distributes the data and finds the local networks needs more processors to work 

faster.  But then the  more processors that work to find the local networks, means the 

agglomeration of the networks will take longer.  So there is a competing affect of using 

more processors for the two different parts of this module.  There really isn't any 

benchmarking results for the agglomeration, since I was never able to run it to completion.  

If there was more time, I would have tried running it with just 4 processors.  I would expect 

this to be able to run to completion.  So the only numbers I have is that it takes longer than 

10 hours for two processors to create a linked list of their network file and then combine all 

the networks to determine the disjoint networks.  

6.5 Finding edges in the disjoint Networks [Premchand 

Bellamkonda]

For finding the number of edges in the disjoint network, I read the number which is the

number of files which is generated after the aglommeration part.

I open all these files to find the number of disjoint newtorks. Each file will be having the 

disjoint network for which number of edges are to be found.

From that file, every word is considered and number of edges connected to that word are 

found.

A word is taken and number of “from” words linked to it are found. i.e Number of words 

connected to that particular words.

Example:

Dog -> barks

Dog -> shouts

Dog -> sleeps

Dog -> drinks



Dog -> crazy

So, here number of words connected or number of edges would be 5.

If at all we if any word is having 10 edges and another word is also having 10 edges but 

with commom words connected to it, that would

be taken care of because even if they have common words which are linked, they will come 

under different edges

Example:

Dog -> barks

Dog -> shouts

Dog -> sleeps

Dog -> drinks

Dog -> crazy

cat -> barks

cat -> shouts

cat -> sleeps

cat -> drinks

cat -> crazy

So here the total number of edges would be 10.



6.5.1 Procedure

We first found the number of lines in each file we read. Then we initialised an array and 

allocated the size of it dynamically with the number of lines in the file. Now for every word 

in the file, we send it to the function Get_Number_of_Edges() which will return the number 

of edges for that particular

word. What this function does is, we will pass a word to this function and this function will 

calculate the number of "from" links from that word. When we calculate all the from links of 

all the words in a network

then we will get the total number of edges in the disjoint network. I am not even 

considering the to links because this will cause false counting of edges. When the function 

Get_Number_of_Edges gets a word whose edges are to be found, the function first finds the 

file locaiton of this word in the network using the information file. Then this found file is 

scanned to find the first entry of the

word. On finding the first entry, we count all the entries where the word in question is the 

first token of the bigram. By doing this the total number of from edges of that word are 

found. This is then returned back and the counting of total number of edges of the network 

processes.

For finding the total number of edges in the  file we sum up all the numbers got from all the 

previous words. This gives me the total number of edges in a file. Like this we read all the 

files and all the data present in the files and print the number of edges in each disjoint 

network.



6.5.2 Alternative approach

Another approach for finding the number of edges for the disjoint networks was to find them

while building the disjoint networks itself. However in the approach which we are using, we 

deal only with single words and see its connections to other words. Depending on the 

connections, we add or remove a node from a network. If we keep track of number of edges 

during this time itself then this will increase the time for processing and the complexity of 

algorithm. Hence we decided to calculate the number of edges once we find all the different 

disjoint networks.

6.5.3 Testing

I tested this part of the code on the whole data set by using a few sample tokens and a few

sample files which represent the disjoint networks. It is working properly and giving correct

number of edges for small data set. But for the complete google data, it is crashing in 

between.

7.0 Utilities [Anagha Dharasurkar]

A co-occurrence network links together words that have occurred together in some piece of 

writing. Each word represents a node in the network, and the edges between the words 

indicate that they have occurred together. The edges are directed, and show the order in 

which the words have occurred. The weights on the edges are the frequency of the two 

words occurring together in that order. The words that occur together in a Google 2-gram 

are linked together, assuming that each of the word occurs individually 200 or more times.



The utilities file provides the functions needed by all the modules like network building and

identification of disjoint networks. The google 2gram data is distributed in 32 files.

The file names start from 2gm-0000 to 2gm-0031. The data is stored in these files in sorted 

order. Along with these files, there is an information file, 2gm.idx, specifying the start token 

in each file. Thus the 32 files themselves act as a co-occurrence with the 2gm.idx acting like 

a mapping file for the data. The makePrimaryDirectories()function required by network 

building deals with forming the directory structure. The network will be stored in a directory 

structure with root directory as "google-ngram-reverse-network". This parent directory 

contains 63 pre-defined directories. 26 directories of alphabets "a" to "z", 26 of alphabets 

"A" to "Z", 10 of numbers 0 to 9. and an additional directory named "symbols". These 63 

directories will be created right at the start of the program. After these are created, we start 

reading the bigram data. For each bigram found, another level of directories will be created.

The function getnumberoflinesFileWise(parentDir,fileLines) returns the total number of lines 

file wise. The processor 0 counts the number of lines in all the files. From this count and 

from the number of processors, the number lines which each processor should process are

calculated. The function GetGraphNodesByToken() is called to get all the related words for a 

specific token. This function accepts token and returns link list of all the tokens associated 

with the input token, according to the bigram files. The approach taken for this was as 

follows:-

Find the possible index file that contains this token. As the 2gm.idx file acts like a mapping 

file, by referring to the entries in this file will guide you to the actual file/files where this 

token is present.

You may only need 1 file but this function will support tokens spanning across upto 2 

different bigram files. This is because a token may have its bigram entries started in one file 

and ended in next file. So it was important to take such cases into consideration. This 

function builds the linklist that contains all the occurrences of the given token. Here is the 

example of the same:



Suppose the token to look up is "big". First the appropriate file will be fetched. Then this file 

will be searched to find the token "big". Once this token is found, the linked list creation 

starts. The first node in the linked list will be "big" (token to be searched). The remaining 

nodes will be all the nodes which have a link from "big". So if there are words say "apple", 

"boy" and "girl" with link from "big" then the linked list will be: big->apple->boy->girl Apart 

from the approach I mentioned, I also evaluated an alternative approach where in I store 

the linked list at each stage in some temporary files. However that approach was not as 

efficient as this one and hence was discarded. Testing was done for all the functions taking 

into consideration the different calls from different modules to the functions.



8.0 Path Finding [Anagha Dharasurkar]

8.1 Introduction

A co-occurrence network links together words that have occurred together in some piece of

writing. Each word represents a node in the network, and the edges between the words 

indicate that they have occurred together. The edges are directed, and show the order in 

which the words have occurred. The weights on the edges are the frequency of the two 

words occurring together in that order. The words that occur together in a Google 2-gram 

are linked together, assuming that each of the word occurs individually 200 or more times. 

The network which was constructed in the alpha stage was used in beta to support queries 

to the network. The queries allow a user to specify a target word, and display the paths of a 

given length leading to and from that word (and to the words that are connected to those

words, and so on ). Thus, the specified target word should be at the center of the paths that 

lead into and out from it. Path lengths are defined in terms of the number of edges in the 

path to and from the target word. Thus, if a path length of 4 is requested, that should cause 

to display all the paths going into (and out of) the target word that have a total length of 

eight edges (where the target word is in the middle of two paths of length 4). If any 

complete paths are found that are less than the requested length, those are to displayed as 

well. Only path lengths of 1 or greater are allowed for display. This makes sense as

noone is interested in seeing standalone nodes for display. A path length of 1 would simply 

indicate if the given target word occurs in the network or not. Only networks consisting of 1 

or more words are allowed. Thus, a word that appears as a google unigram but is not 

involved in any ngram relationships would be considered its own network and should be be 

treated as a one node network with no edges associated with it. Also I implemented the 

search taking into consideration the case sensitive factor , that is "go" and "Go" were 



treated as different words. I made a target-list file (query_list file) that contained a list of 

target words and path lengths to be displayed. The format of target-list file was as follows:

target path-length

target1 path-length1

...

targetn path-lengthn

where target is the word that will be at the center of your network, path-length is the 

number of edges going into and out from the given target for which words will be displayed.

For example, the entry girl 5 in target-list, would consider "girl" as the middle target node 

with nodes going into and out of the middle node and having path length 5 on each side 

that is the To and From nodes. So effectively I will get total length of 10 edges

eg, almost->every->nice->and->generous->girl->must->eat->good->italian->food

Also for final result along with the above format the frequencies between pair of words will 

be displayed with time it took to find the path. So it will look something like this, (below 

values are some arbitrary values for example purpose)

almost->(1000)every->(1800)nice->(2200)and->(1400)generous->(1900)girl-

>(2700)must-

>(3900)eat->(1200)good->(2100)italian->(4200)food

almost every will have frequency 1000,every nice will have frequency 1800, nice and will 

have frequency 2200, and so on etc.

8.2 Algorithm

The overall idea of my algorithm was as follows :-

1) Read the query (target-list) file according to the file format which is as follows

<token> <path length>. This file is mapped from the command line argument provided.



2) Then distribute each query from target-list to processors parallely by block allocation 

scheme of n/p logic as follows,

int start = (rank - 1) * (totalQueriesRead/(totalProcesses -1));

int end = (rank) * (totalQueriesRead/(totalProcesses -1));

3) I have dedicated the processor with rank 0 exclusively for printing. So processors from 

rank 1 onwards will be involved in query processing. All processors send the path results 

they obtain to processor with rank 0 who is responsible for printing the individual paths 

explored.

4)I have used MPI_Send and MPI_Recv by which each processor passes the paths they 

obtained by bundling in a data structure (All data structures would be described in detail 

next in this document). I thought this brought about good deal of parallelism. The 

integrated nature of the problem and recursive nature of the algorithm made breaking the 

problem for more fine parallelism and division of work into pieces for allocation quite 

difficult without impacting the results.

5) The recursive traversal is done through all the 'from' nodes of the given target node. This

functionality uses NetworkInterface helper to get list of all the 'from' nodes for a given 

targetnode. After this list is obtained it processes each 'from' list based on DFS technique. 

In addition to traversing the node, this function builds a tree for each node with edges that 

represents links and corrosponding frequencies.

6)Then the recursive traversal is done through all the 'to' nodes of the given target node. 

This functionality uses NetworkInterface helper to get list of all the 'to' nodes for a given 

targetnode. After this list is obtained it processes each 'to' list based on DFS technique. In 



addition to traversing the node, this function builds a tree for each node with edges that 

represents links and corrosponding frequencies.

7) The AddLinks function creates necessary links between given 2 nodes. This function is 

called from both "BuildFromNetwork" & "BuildToNetwork" methods. This function basically 

joins the two nodes together as it can create both the "from" link & "to" links. It is called 

from both "BuildFromNetwork" & "BuildToNetwork" methods.

8) The recursion limit is till max path length mentioned. After that limit the above 

processing is stopped and the individual last nodes are stored in a data structure and now 

these will be the start nodes of different possible paths. This data stucture holding all the 

starting nodes of the individual paths in a link list of type "Results". (All Data structures 

described further).

9) For checking the cyclic dependency a node cache is maintained which stores the visited 

links. After the node is created it is also added to a cache. So the logic goes that if you 

create a link between nodes once and if there is request for linking them again then this is a 

potential cycle which will be confirmed along with few other checks. The GetNodeFromCache 

gets the requested node from cache instead of creating it again. (This could not be tested in 

detail due to lack of time)

8.3 Program Structure at a glance

(The below diagram just includes the important functions. The data structures used and 

input or output parameters are not mentioned in below diagram)



8.4 Data Structures

struct GraphNode (used for each node)

{

char *token;

int currentDepth;

struct GraphLink *fromEdges;

struct GraphLink *toEdges;

};

struct GraphLink (used for links between nodes)

{

StartQuerySearch()

ReadQueryFile()

BuildNetworkForTarget()

CreateGraphNode()

GetNodeFromCache()

AddNodeToCache()

BuildFromNetwork()

(Recursive)

BuildToNetwork() 

(Recursive)

GetLinksFromNode()

(Network Interface)

GetLinksToNode()

(Network Interface)

AddLinks()

PrintOutput() 

AddToResults()



struct LinkDetail *linkDetail;

struct GraphLink *Next;

};

struct LinkDetail (used by individual links)

{

struct GraphNode *neighbour;

int weight;

};

struct Results (used for final results)

{

struct GraphNode *start;

struct Results *Next;

int pathLength;

char *buf;

double elapsedTime;

};

struct NodeCache (used for cache implementation for cyclic dependency)

{

struct GraphNode *node;

struct NodeCache *Next;

};



8.5 Testing

Testing was done with different data sets ranging from small to very big data sets. I made 

some rough networks on paper and then made own dvd1 sets for them after constructing 

the bigram and idx files for my own networks. Then after running our alpha stage network 

creation the network was actually created and which in turn different target-list files were 

made for all combinations.

Then the answers for different paths explored with appropriate path lengths were matched 

with the various path traversal possibilities with the on paper network. The consideration of 

various data sets and their different query and path length combinations made sure that the 

code successfully passed all the input data variations without any bias for any specific 

conditions.

8.6 Challenges

The beta phase was challenging for me for implementation as it actually dealt with the path

exploration and network traversal. Some issues in network creation for alpha stage had to 

be tackled well for accurate results in beta stage as now was the time when the created 

network was going to be used and verified. Some bugs were revealed for alpha stage 

network building during the beta testing. These were fixed during and beta code was tested 

again. So this helped strengthen the alpha network creation as well.



8.7 Memory Management Improvements

Beta code had plenty of memory leaks that caused issues when running path finding for 

larger density target words.

 Current version of code will free resources as soon as path generation is now complete.

 Following are details of improvements

AddLinks :-

This function is re-written to remove redundant 'link' code that was not necessary to build 

the network or find the path. 

This function now allocates memory just enough to store the pointer to next element as 

oppose to adding link to backtrack the network.

Removing this code reduces the memory required to store links between 2 nodes from 32 

bytes to 16 bytes.

BuildFromNetwork :-

This function is responsible for generating network for all the words that are to the right 

side of the target word. 

This function is now freeing up memory occupied by the network interface return list as 

soon as that word is consumed 

rather than consuming all the list and then freeing up the entire list. 

This function had tremendous impact in processing more words because the amount of 

runtime memory available is

significantly more.



Another improvement done in this function is to release the memory occupied by the nodes 

on the path as soon as all the 

possible paths for that node are generated and written to temporary output files.

This function also benefited from the optimization in AddLinks function (mentioned above).

BuildToNetwork :-

This function is responsible for generating network for all the words that are on the left 

hand side of the target node. 

This function is now freeing up memory occupied by the network interface return list as 

soon as that word is consumed 

rather than consuming all the list and then freeing up the entire list. 

This function also benefited from the optimization in AddLinks function (mentioned above).

This function is similar to above mentioned function except it processes all the words on the 

left hand side of the target node.

8.8 Algorithm Changes

Path Finding Architecture Changes :

My Beta code strategy was to build the entire network in memory and then traverse through 

the network using a sort of



 DFS (depth first search) method to generate. This function when tested on the actual 

google data fell apart because of 

huge memory requirement to build the entire network in memory. For this release I have 

optimized my code to generate network 

in 2 different halves,

1 - Left side of the target word & 

2 - Right side of the target word. 

How does it work better?

My beta code supported processing left and right network separately with few dependencies 

between them. 

In this version of the code, the 2 processing functions are completely separate and have no 

dependency. 

Left side processing function (BuildToNetwork) processes data and writes it to an 

intermediate file on the

disk and releases memory once path is found. Right side processing function 

(BuildFromNetwork) processes data and also

 writes it to and intermediate file and releases memory. 

These intermediate files are named as "<target_word>_left" and "<target_word>_right" 

respectively. 

Once both the functions are done writing intermediate paths to the files, the last function 

combines the paths from 

left and right files to produce final output (on console). 

This made possible producing definite results for path length greater than 1.



 Memory Optimization :

For the beta code, in order to generate one path the code had to processes the entire 

network from left most word to the right most word. 

Assuming a network that has path length of 2 with average number 'from' or 'to' words = 

10 beta code would had to processes 221 nodes to build the 

entire graph before generating even a single path. But in the new architecture at any time 

we only need 110 elements to 

form a complete path from the left side or the right side before the partial path is generated

and written out to temporary file. 

This allows code to quickly release memory.

8.9 Revised Block Diagram For Changed Algorithm

(The below diagram just includes the important functions. The data structures used and 

input or output parameters are not mentioned in below diagram)



8.10 Optimization for Parallelism

As the network is processed in 2 parts it is theoretically possible to process the 'from' & 'to' 

functions (BuildFromNetwork, BuildToNetwork).

 These functions are independently executed on different processors to find left and right 

side networks of the target paths.

 This functionality required MPI scheduling and data gathering routines.

StartQuerySearch()

ReadQueryFile()

BuildNetworkForTarget()

CreateGraphNode() GetNodeFromCache()

AddNodeToCache()

BuildFromNetwork()

(Recursive)

BuildToNetwork() 

(Recursive)

GetLinksFromNode()

(Network Interface)

GetLinksToNode()

(Network Interface)

AddLinks()

SetupOutputFiles() 

AddToResults()

WriteStagingOutput()

(Recursive)

CombineFinalOutputFiles()



 Processing these networks separately on different processors also allows more memory to 

process

larger network because 8GB on the blade will be allocated to build only network that is on 

one side of the target word

 as opposed to entire network.

8.11 Testing

A)Unit Testing

Each function in this code was tested with predetermined output for given set of 

parameters. 

I tested this code against 2 sets of network, one that was hand designed (manually) and 

then mapped it onto exactly

 google n-gram data format. These networks were quite small and served the purpose of 

making sure that each function is outputting data correctly. 

I also wrote awk scripts and regular expression parsing to verify the actual words scanned 

from the google data files to compare it 

to the actual processing in the code.

-------------------------------------- AWK SCRIPT -------------------------------------------------

--------

awk '

{



for (i = 1; i <= 1; i++)

freq[$i]++

}

END {

for (word in freq)

printf "mkdir %s\nmkdir %s\\to \nmkdir %s\\from\n", word, word, word

}' vocab_cs > create_dir_script

-------------------------------------------------------------------------------------------------------

-----

B)Integration Testing

I am using interface function to load data from underlying networks to process data, that is 

written by one of the team member.

 These functions did not change with the exception of few minor bug fixes. This interface 

stayed constant did not require separate testing as unit testing routine covered these 

function calls also.

C) Stress Testing

I have extensively tested the code to find out the boundaries or maximum number of words 

that could be processed before the memory was 



exhausted on the given machine. This particular testing method had variable results and 

was dependent on other external factors outside

 of my controls such as, number of other jobs running on the node at the time of execution 

of code, amount of memory available for allocation 

and memory/load on the system. Since I am generating intermediate files I gathered all

the data from the intermediate files and following is one of the output that crashed after 

processing average number of nodes

I ran 6 different tests with target word = www.nokia.com which consistently processed 

more than  4,000,000 words before it died.

All the nodes below www.nokia.com, such as from, of, on, etc are the associated or children 

nodes.

 Function Name Lookup Word # of Nodes Returned

 BuildToNetwork  www.nokia.com, length is 28

 BuildToNetwork  from, length is 267470

 BuildToNetwork  of, length is 469588

 BuildToNetwork  on, length is 435238

 BuildToNetwork  or, length is 354156

 BuildToNetwork  nokia.com, length is 24

 BuildToNetwork 1363433

 BuildToNetwork  [, length is 470332

 BuildToNetwork  eg, length is 8613

 BuildToNetwork  see, length is 24484

BuildToNetwork  site, length is 54148

 BuildToNetwork  info, length is 23943

http://www.nokia.com
http://www.nokia.com
http://www.nokia.com
http://nokia.com


 BuildToNetwork  through, length is 77796

 BuildToNetwork  to, length is 603945

 BuildToNetwork  Visit, length is 12253

 BuildToNetwork  visit, length is 13636

 BuildToNetwork  www.n-gage.com/press, length is 4

 BuildToNetwork  www.nokia.com, length is 28

 BuildToNetwork  Check, length is 16369

 BuildToNetwork  as, length is 268761

____________________________________________________________________

   Total Words Processed    4,464,249

The above result shows that the 'To' Nodes processing itself consumed more than 4 million 

before it crashed. Hence the 

BuildFromNetwork did not get a chance at all.

8.12 Migration to Altix

Since amount of memory available on ALTIX is lot more than blade, massive data could be 

managed to find paths for greater than 1 path length.

The output path files were as big as upto 30 GB. Some of the interesting results for some 

the target words were :-

TARGET WORD PATH-LENGTH OUTPUT FILE SIZE (APPROX)

aaryan  3 24 GB

http://www.n-gage.com/press
http://www.nokia.com


macstate 2                    22 GB

www.nokia.com        3                    25 GB

Bush 2 18 GB

india 2 12 GB

On Altix I was able to get results for even small density keywords upto 8 pathlength before 

it ran out of space. 

As it can be seen it was not possible to provide all these results on Blade. But migration of 

our entire system on Altix was not chosen because it was late by the time I got the results. 

Also altix has queue etc response problems.

8.13 Benchmarking Results

Program was run on the real google-2gm data. The path finding was successful and all the 

paths were generated for the following target list

with 2,3,4 and 5 processors and various execution 'TIME' were obtained. These results 

below are on Blade.

-----Target list-------------------

http://www.nokia.com


gulti 2

zakas 2

tagor 2

pendse 2

------------------------------------------------

The target.txt file was kept consistent to find the performance change with respect to 

increasing number of processors.

Processors      Total Execution Time (to find all the paths)  

-----------------------------------------------------------------------

2        Total Walltime = 6.992774



            3 Total Walltime = 4.617482

            4 Total Walltime = 4.246133

            5 Total Walltime = 3.163215   

----------------------------------------------------------------------

As you can see the time does decrease with increase in number of processors. However, the 

time does not decrease by half when 

I double the number of processors. Along with some communication overhead this is mainly 

because of some inherent 

sequential portion of the code which was not possible to parallelize. Later down kindly find 

the Performance Analysis done

by Amdahl's Law and Gustafson-Barsis's Law.

***********************************************************************      

9) PERFORMANCE ANALYSIS 

*****************************************************************

It was not possible to make some inherent sequential portion of the code parallel. This 

component was mainly recursion for getting 'from'

and 'to' nodes recursively, associated with the target word till the specified path length. It is 

difficult or can say almost impossible

to divide recursion into parallel task pieces. This chunk was quite considerable and had quite 

some impact. Also some small time is spent



performing initializations and cleanup on processor. So overall on the average can say 60% 

code is sequential.

Hence the fraction f = 0.6 (portion of the computation that is inherently sequential). This 

fraction will help us do the performance analysis by 

Amdahl's Law and Gustafson-Barsis's Law for varying number of processors.

   SpeedUp (in general) =           Sequential execution time

----------------------------------------

Parallel execution time

Amdahl's Law  :-

Amdahl's Law is based on the assumption that we are trying to solve a problem of fixed size 

as quickly as possible.

It provides an upper bound on the speedup achievable by applying a certain number of 

processors to solve a

problem in parallel.

Let f be the fraction of operations in a computation that must be performed sequentially, 

where 0 <= f <= 1. The maximum



 speedup S achievable by a parallel computer with p processors performing the computation 

is,

             S  =           1

----------------

                     f + (1-f)/p

 Using this above formula , after calculations the speedup that can be acheived by Amdahl's 

Law for different 

 number of processors is,

             Processors                     Speedup (S)

-------------------------- ---------------------------------

                 2 1.25

                 4 1.428

                 6                              1.5

                 8                              1.54

                16 1.6

---------------------------------------------------------------------------------------------



It can be seen that the speedup values are not differing greatly and hence can say that 

speedup achieved has not benefited by increasing number of processors due to the 

considerable sequential portion of the code which is a hurdle. 

Gustafson-Barsis's Law :-

While Amdahl's Law determines speedup by taking a serial computation and predicting how 

quickly that computation could execute

on multiple processors,  Gustafson-Barsis's Law does just the opposite. It begins with a 

parallel computation and estimates

how much faster the parallel computation is than the same computation executing on a 

single processor.

Given a parallel program solving a problem of size n using p processors, let s denote the 

fraction of total execution time spent

 in serial code.  

The maximum speedup S achievable by this program is 

                       S <=  p + (1-p)s



We refer to the speedup predicted by Gustafson-Barsis's Law as scaled speedup, because by 

using the parallel computation as

the starting point, rather than the sequential computation it allows the problem size to be 

an increasing function of the number of

processors. The fraction s = 0.6 (derived above) for inherent sequential portion of the code 

remains the same.

Using the above formula , after calculations the scaled speedup that can be acheived by 

Gustafson-Barsis's Law for different 

 number of processors is,

           Processors                 Scaled Speedup (S)

-------------------------- ---------------------------------

                 2 1.4

                 4 2.2

                 6                              3.0

                 8                     3.8

                16 7.0



---------------------------------------------------------------------------------------------

It can be seen that the scaled speedup values are nicely improving by increasing number of 

processors. This

is probably because Gustafson-Barsis's Law uses the parallel computation as the starting 

point rather than the sequential.

Here also  the considerable sequential portion of the code is a barrier but its effect on 

speedup is less worse than in 

Amdahl's Law . 



9.0 Running the Project [Salil Bapat]

The tar file containing all the project code and documentation for the beta stage will be 

named google-ngram-1.0.tar. When this file is untared, it will contain 2 directories Code and 

Report. The Code directory will contain all the project code. In the same directory there will 

be a runit.sh shell script. Running this script will run this project.

For running the runit.sh, you need to give it following command line parameters:

a) dir-name: The name of the directory which contains the unpacked dvd directories that

contain the Google Ngram data. It is assumed that the dvd directories and all of their

subdirectories will remain exactly as provided by google. The project will simply read this 

data and not modify it in any way.

b) unigram cutoff (integer/number): unigram-cut is the minimum number of times each

unigram in a bigram must have occurred for a bigram to be included in the network you 

build.

c) associative cutof (number): it is the minimum "association score" that a pair of words 

must have in order to be included in a path.

d) target-list: target-list is a file that will contain a list of target words and path lengths to 

be displayed.

So the command will look like:

runit.sh dir-name unigram-cut assoc-cut target-list

On running this command, a directory named google-ngram-reverse-network will be created

which will contain the reverse google-ngram network. After this the disjoint networks and

network statistics will be found out. Then the queries in target-list will be processed.

http://runit.sh
http://runit.sh
http://runit.sh
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